\qquad Hour \qquad

Purpose: Determine the effect mass and length have on a pendulum.
Info: A pendulum consists of a mass called a __bob_ suspended from a support. The period of a pendulum is the time forit to swing_back and forth once \qquad .

Part 1: Length of a pendulum

Data: Pick 8 different lengths of string (at least $\mathbf{2} \mathbf{~ o v e r} \mathbf{7 0} \mathbf{c m}$ and at least $\mathbf{3}$ under $\mathbf{1 0} \mathbf{c m}$) and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the a verage period of the pendulum for each length. Keep swings small- around 10-150.
*It works best if you start with your longest, and then cut that to make it shorter each time.

	Length (cm)	Length (m)	Time for 5 swings back and forth	Period (T)	T^{2}
1	97			1.96	
2	90			1.92	
3	79			1.79	
4	68			1.67	
5	43			1.34	
6	9			0.77	
7	3			0.56	
8	2			0.52	

Make a Period vs. Length graph below: (Collect the data on the back first)

1. What is the shape of your graph? \qquad
2. What type of relationship exists between T^{2} and length? \qquad
3. a. In a different color, re-plot your graph using \mathbf{T}^{2} vs. length. (You may have to extend your graph vertic a lly)
b. What type of relationship exists between T^{2} and L ? \qquad
\qquad Hour \qquad

Part 2: Mass of a Pendulum
Data: Pick 5 very different masses a nd time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average period of the pendulum for each mass.

	Mass (g)	Mass (kg)	Time for 5 swings bdck and forth	Period (T)
1	200			1.55
2	250			1.51
3	100			1.52
4	50			1.53
5	25			1.56

Make a Period vs. Mass graph below:

4. What type of relationship exists between the period and mass of a pendulum? \qquad

Conclusion:

5. Derive the equation for a pendulum. © That means to show how to get it!
i. Start with $\mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / r$ and plug in $v=2 \pi r / T$ into it for v :
ii. Simplify and solve for T^{2} :
iii. Then rename your variables. The radiusisjust length of a pendulum ($r=L$) and $\mathrm{a}_{\mathrm{c}}=\mathrm{g}$.)

The equation for a pendulum is:

Iv What relationship exists between Tand L?
v. What relationship exists between T^{2} and L ?
\qquad Does your equation show this? \qquad
vi. What relationship exists between Tand m ? \qquad Does your equation show this? \qquad Does your equation show this? \qquad
6. Calculate how long a pendulum should be on earth to have a period of 1.2 sec if the mass is 1.2 kg . (ans. 0.36 m) Look at your graph on the front to verify again that you are correct. ©

