

**Purpose**: Determine the effect mass and length have on a pendulum.

**Info:** A pendulum consists of a mass called a <u>bob</u> suspended from a support. The period of a pendulum is the time for it to swing back and forth once \_\_\_\_\_.

## Part 1: Length of a pendulum

Data: Pick 8 different lengths of string (at least 2 over 70 cm and at least 3 under 10 cm) and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average period of the pendulum for each length. Keep swings small- around 10-15º. \*It works best if you start with your longest, and then cut that to make it shorter each time.

|   | Length (cm) | Length (m)     | Time for 5 swings | Period | T <sup>2</sup> |
|---|-------------|----------------|-------------------|--------|----------------|
|   |             | back and forth |                   | (T)    |                |
| 1 | 97          |                | $\mathbf{n}$      | 1.96   |                |
| 2 | 90          |                |                   | 1.92   |                |
| 3 | 79          |                |                   | 1.79   |                |
| 4 | 68          |                |                   | 1.67   |                |
| 5 | 43          |                |                   | 1.34   |                |
| 6 | 9           |                |                   | 0.77   |                |
| 7 | 3           |                |                   | 0.56   |                |
| 8 | 2           |                | × ×               | 0.52   |                |

Make a Period vs. Length graph below: (Collect the data on the back first.)



- 1. What is the shape of your graph? \_\_\_\_\_
- 2. What type of relationship exists between T<sup>2</sup> and length?
- 3. a. In a different color, re-plot your graph using T<sup>2</sup> vs. length. (You may have to extend your graph vertically)
  - b. What type of relationship exists between T<sup>2</sup> and L?

## Part 2: Mass of a Pendulum

<u>Data</u>: Pick 5 <u>very different</u> masses and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average **period** of the pendulum for each mass.

|   | Mass (g) | Mass (kg) | Time for 5 swings | Period |
|---|----------|-----------|-------------------|--------|
|   |          |           | back and forth    | (T)    |
| 1 | 200      |           |                   | 1.55   |
| 2 | 250      |           |                   | 1.51   |
| 3 | 100      |           |                   | 1.52   |
| 4 | 50       |           |                   | 1.53   |
| 5 | 25       |           |                   | 1.56   |

Make a Period vs. Mass graph below:



Mass (kg)

4. What type of relationship exists between the period and mass of a pendulum?

## Conclusion:

- 5. Derive the equation for a pendulum. © That means to show how to get it!
  - i. Start with  $a_c = v^2/r$  and plug in  $v = 2 \pi r/T$  into it for v:
  - ii. Simplify and solve for T<sup>2</sup>:

iii. Then rename your variables. The radius is just length of a pendulum (r=L) and  $a_c = g$ .)

The equation for a pendulum is:

- Iv What relationship exists between T and L? \_\_\_\_\_ Does your equation show this? \_\_\_\_\_
- v. What relationship exists between T<sup>2</sup> and L? \_\_\_\_\_ Does your equation show this?\_\_\_\_\_
- vi. What relationship exists between T and m? \_\_\_\_\_ Does your equation show this?\_\_\_\_
- 6. Calculate how long a pendulum should be on earth to have a period of 1.2 sec if the mass is 1.2 kg. (*ans. 0.36 m*) Look at your graph on the front to verify again that you are correct. ©